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ABSTRACr

The elastic/plastic response of ceramic microballoon reinforced metal matrix

composites subject to uniaxial loading are examined using finite element analysis. The

microballoons are assumed to be spherical and their morphology characterized by the

ratio of wall thickness, t, to radius, R. The key parmeter investigated are the relative

wall thickness, t/R, the modulus ratio (matrix/ceramic) and the yield and hardening

characteristics of the matrix. The emphasis of the study is on the overall stress-strain

response of the composite, the development of matrix plastidty and the development of

stress within the microballoon.
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1. INTRODUCTION

A novel class of light-weight metal matrix composites (MMCs), utilizing ceramic

microballoons as reinforcements, has recently emerged1 2 . The microballoons are

essentially thin-walled spherical shells, ranging in size from - 20 Pm to several mm.

Typically, the volume fraction of microballoons is in the range of 50-60%. A micrograph

of one such composite is shown in Fig. 1. The composites are being targeted for marine

applications requiring high specific strength and stiffness and high damping capacity.

The potential advantages of these systems over continuous fiber reinforced materials

include superior mechanical isotropy, lower production costs and greater flexibility in

component fabrication. Their main advantage over conventional particulate-reinforced

MMCs is their reduced density, a result of the void space within the reinforcements.

The present paper examines the elastic/plastic response of microballoon

reinforced MMCs subject to uniaxial loading (compressive or tensile). The majority of

the results are based on a finite element analysis of axisymmetric unit cells. The key

parameters investigated are: (i) the ratio of the matrix modulus, Em to that of the

ceramic, Er, (ii) the microballoon morphology, characterized by the ratio of wall

thickness, t, to microballoon radius, RX and (iii) the work hardening characteristics of the

matrix. The focus of the work is on the overall stress-strain response of the composite,

the development of matrix plasticity and the development of stresses within the

microballoons.

2. NUMERICAL MODEL

Finite element calculations were conducted on cylindrical unit cells containing a

microballoon at the cell center. The height of the cylinder was taken to be equal to the

diameter. The ratio of the microbaUoon wall thickness, t, to the microballoon radius, R,
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was varied from 0 to 1. In all cases, the total volume fraction of microbaloons was 50%.

A typical finite element mesh for t/R - 02. is shown in Fig. 2.

The boundary conditions were prescribed to model a state of uniform tension or

compression, applied parallel to the axis of the cylinder. The top face of the cylinder

was required to remain planar, with an average normal traction, a, and zero shear

traction. The lateral face was also required to remain planar but with zero average

normal and shear tractions acting on it. The model was implemented using the finite

element program ABAQUS, with 8-noded 2-dimensional axisymmetric biquadrilateral

elements. A typical mesh contained 480 elements and 1565 nodes. The overall strain

was increased by increments of Aseo = 0.1 for PAO < 5, •e•o = 0.2 for 5 < e/e1 < 10,

and Ae/-o = 0.5 for PAO > 10. The effective (deviatoric) strain in the matrix as also

evaluated, allowing the evolution of matrix plasticity with remote strain to be

monitored. In addition, the stresses within the microballoon were evaluated.

In most cases, the matrix material was taken to be elastic-perfectly plastic, with a

yield stress ao. In others, the matrix was assumed to follow power-law hardening, in

accordance with the Ramberg-Osgood flow law. For uniaxial loading, this law can be

expressed as

e aY Ca
E0 0 (1))

where eo is the yield strain (ao/En); (; and e are the axial stress and strain, respectively;

cc is a numerical coefficient, taken to be 3/7; and n is the work hardening exponent. The

effects of matrix hardening were studied by varying n between 0 and 02 The solid

portion of the microballoon was assumed to be elastic, with a Young's modulus, Ec. The

Poisson's ratios V of both the matrix and the microballoon material were taken to be 0.3.
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The onset of particle cracking was assumed to occur when the maximum tensile stress

within the c reached a critical value, m.

3. ELASTIC PROPERTIES
3.1 Numerical Results

Figures 3(a) and (b) show the effects of the modulus ratio, Ec/Em, and the

microballoon morphology, characterized by the ratio t/R, on the composite modulus.

In (a), the results are normalized by the matrix modulus, Em, and, in (b), by the limiting

composite modulus, Es, corresponding to t/R = 1. The limiting modulus Eo at t/R = 0 is

0.330 Emr. The latter limit corresponds to a porous material (with no reinforcement) and

is thus independent of Ec/Em. At the other limit, wherein t/R = 1, the modulus .s

increases monotonically with the modulus ratio, Ec/Em. In the regime 0.5 < t/R 5 1, the

modulus is insensitive to t/R, indicating that the elastic response of the microballoons is

similar to that of fully dense particulates. When t/R drops below - 0.5, the modulus

begins to decrease more rapidly with decreasing t/R. For modulus ratios in the range

2 5 Ec/Em < 10, the relative reduction in modulus is essentially independent of the

elastic mismatch, Ec/Em, as shown in Fig. 3(b). For higher values of Ec/Em, the

reduction is less sensitive to t/R.

At the simplest level, the trends in modulus with wall thickness can be

rationalized on the basis of the porosity within the microballoon. By interpolating

linearly between the two limiting cases (corresponding to t/R = 0 and 1), the modulus

can be approximated by

E/Em = p Eo/Em + (l-p) Es/Em (2)

71:M13(Apig 7.199)3-:19 PMod



6

where p is the volume fraction of porosity within the microbulloon and is related to the

wall thicknems through

p = (1-t/R)3. (3)

The predictions of Eqns. (2) and (3) are shown by the dashed lines in Fig. 3(a). For

modulus ratios in the range 2 < Ec/Em < 10, this approach appears to be consistent with

the FEM results. For higher modulus ratios, the two differ substantially over the entire

range of t/R, with the FEM calculations yielding higher values of F.

The finite element calculations have also been used to evaluate the Poisson's ratio

of the composites, and the results combined with the Youngs moduli to evaluate the

bulk modulus, k. The trends in k with t/R and Ec/Em are shown in Fig. 4. Also shown

are the results of an analytical solution, described below.

3.2 Analytical Solution

An analytical solution for the bulk modulus of the microballoon composites has

been obtained by considering the elastic response of a spherical unit cell, subject to

hydrostatic loading. The cell consists of a spherical incroballoon and a concentric

spherical shell of matrix material. The dimensions of the microballoon and the matrix

are selected to give a microballoon volume fraction of 50%. The solution is obtained by

invoking the usual continuity and equilibrium conditions3 ,4 . The results of this analysis

can be expressed as

km - 2(1-2v)/(5 - 7v- 9(1-v)2  
(4)km

where

7LM334(W d7. 1994)3:19 P~ld
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2= { v(1+Em /Ec) + (m/c (-ItR3

Comparisons between the analytical and FEM results are presented in ig. 4. The two

approaches yield similar results, though the analytical results slightly overestimate

those from the FEM for t/R > 0.2. This discrepancy is attributable to the different unit

cell shapes (cylinder vs. sphere) used in the two sets of calculations.

3.3 Performance Indices

The design of structural components requires consideration of three factors:

(i) the properties of the material, (ii) the component geometry, and (iii) the functional

requirements of the component. In many instances, the material is selected on the basis

of certain performance indices, each characterizing the performance of the material in a

certain class of component geometry and functional requirement. For stiffless-critical

design, three such indices have been identified 5 . The first is the ratio E/p, where p is

the density of the material. A material with the highest value of this index produces the

stiffest rod, subject to axial loading, for a given mass of material. The second is the ratio

E1/ 2 /p. This performance index is used for the optimal design of a beam in bending or

a column subject to elastic buckling. The third index, El/ 3 /p, is used for the design of

plates, loaded in bending, either externally or by self-weight.

These performance indices have been used to assess the stiffness characteristics

of microballoon composites relative to those of the matrix material alone. For this

purpose, three normalized performance indices are introduced: E pm/Eni p,

E1/ 2 pm/E 1/2 p and E1/ 3 Pm/Em3 P, with p being the composite density. Alternatively,

the normalized indices can be written in the form (E/Em)l/a (Pm/P) where O( is a

7L1U34(Apd 7. 1994)3.19 PMtai
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numerical coefficient that can take on values of 1, 2 or 3, depending on the loading

configuration. The trends in these indices with the wall thickness, t/R, and the density

ratio Pc/Pm (with Pc being the density of the ceramic) for a modulus ratio Ec/Em = 5 are

presented in Fig. 5. For low values of Pc/Pm (< 1), all performance indices are

maximized when the reinforcements are fully dense (t/R = 1). The indices initially

decrease slowly with decreasing t/R. At small values of t/R, the indices decrease more

rapidly, with the rate of decrease increasing with the coefficient a, ie. E Pm/Em p

decreases more rapidly than El/ 2 Pm/E; 2p. For Pc/Pm = 1, the optimal wall thickness

depends on the performance index of interest. Specifically, for a = 1, the performance

index is maximized at t/R = 1; for a = 2, it remains essentially constant over the entire

range of t/R; and for a = 3, it is maximized at t/R - 0.05. For yet higher values of

pc/po, the performance index for a = 1 becomes more insensitive to t/R, though it is

still maximized at t/R = 1. The other two indices are at a maximum at t/R = 0 and at a

minimum at t/R = 1.

The results demonstrate that the selection of the ceramic/metal combination and

the relative wall thickness for optimal stiffness characteristics depends sensitively on

the intrinsic physical and mechanical characteristics of the constituents as well as the

application under consideration. Moreover, assessment of the performance of the

composites relative to that of the matrix material alone can be readily made through the

use of appropriate normalized performance indices.

4. PLASTIC FLOW AND FRACTURE
4.1 ElasticfPlastic Response

The stress-strain curves of composites in the elastic-plastic regime for t/R = 0.5

and 0.05 are shown in Figs. 6(a) and (b). Also shown in the figures are the boundaries

between the elastic and yielded regions of the matrix at various levels of overall strain.
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The stress-strain curves for composites encompassing the entire range of t/R (0 to 1),

over a wide range of strains are shown in Fig. 7.

For composites with thick walled microballoons (t/R = 0.5), matrix yielding

initiates in the polar regions (above and below the microballoon), and spreads laterally

with increasing strain (Fig. 6). The onset of yielding occurs at an overall strain which is

less than the matrix yield strain (W/eo < 1). The matrix becomes fully yielded at an

overall strain, e/Lo - 1.5, corresponding to a stress, O1/o - 1.5. Nevertheless, the flow

stress of the composite continues to increase with strain, reaching a saturation level,

O/Oo0 = 1.75, at a strain, E/Eo - 6 (Fig. 7). The development of matrix yielding and the

asymptotic approach to the saturation flow stress are essentially the same as those

previously found for composites reinforced with fully dense spherical particulates

(t/R = 1)6.

The behavior of composites containing thinner walled microballoons is

substantially different. For t/R = 0.05, matrix yielding initiates in regions located - 30"

away from the equatorial plane of the microballoon (Fig. 6). This occurs at a relatively

small strain: E/&, - 0.6. Upon further loading, the yielded region quickly spreads

toward the equatorial plane and, somewhat less quickly, toward the polar region. The

elastic region within the matrix persists up to large overall strains, i.e. e/eo a 5.

However, at these strains, the composite flow stress remains relatively small:

W/oo - 1.0. Upon yet further loading, the flow stress continues to increase slowly with

strain. It ultimately reaches the same asymptotic level as with the thick-walled

microballoons (/I 0o - 1.75), though at a much larger strain (E/eo - 30). With the

thin-walled microballoons, the strain range over which transient response persists is

extremely large, such that the flow stress measured experimentally in these materials is

not expected to reach the saturation level.

7L15340Apd 7. 1994)3-19 PK~Id
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4.2 Stress Distributions

Finite element calculations have also been performed to evaluate the stress

distributions within the microballoons Illustrative examples showing the effect of wall

thickness are shown in Fip. 8 and 9. In these examples, the remote strain is /eo - 2

and the applied stress is tensile. The stresses are expressed in terms of the cylindrical

co-ordinate system (r, 0, z) that defines the external boundaries of the composite unit

cell. In addition, the minimum and maximum principal stresses are evaluated. The

location and magnitude of the maximum principal stress, SI, is used to identify the

probable location of microballoon fracture and the corresponding applied stress and

strain. Similarly, the minimum principal stress S3 is used to address the problem of

nicroballoon fracture under remote compressive loading.

Under tensile loading, the maximum principal stress in the thick walled

microballoons (t/R = 0.5) occurs at the inside wall of the microbafloon, along the

equatorial plane (Fig. 8). Comparisons of the S1 and a(Y contours indicate that the

maximum principal stress in this region acts parallel to the loading direction.

Consequently, tensile failure of the microballoons is expected to occur by the formation

of cracks along the equatorial plane, perpendicular to the applied stress. For

thin-walled microballoons (t/R < 0.2), the location and direction of the maximum

principal stresses are the same (Fig. 9), and consequently the mode of cracking is

expected to be similar. Furthermore, the magnitude of the principal stresses in the thin

walled microballoons is similar to that in the thick walled microballoons for a

prescribed remote strain. As a result, tensile failure is expected to be initiated at a

similar strain, though the stresses will differ substantially.

Under compressive loading, the principal stress distribution depends more

sensitively on wall thickness. For thick walled microballoons (t/R = 0.5), the maximum

principal stress (shown as the minimum principal stress for tensile loading) is located

7nLS34(Apd17 .1994)3:19n#Amd
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along the inside wall in the polar region of the microballoon (Fig. 8). Comparisons of

the S1, azz, and ( n contours indicate that these highly stressed regions are essentially in

a state of equal biaxial tension, with the stresses acting perpendicular to the loading

direction. As a result, cracks are expected to initiate in the polar region and be aligned

parallel to the loading direction.

In the thick walled microballoons, the maximum principal stress acting along the

outer surface of the microballoon in the equatorial plane is also relatively large. Here,

Si acts in the hoop direction, with the radial stress Orr being small and the axial stress

azz being compressive. Flaws located in these regions could lead to hoop cracks

oriented parallel to the loading direction. As the wall-thickness is reduced, the

magnitude of the principal stresses in the equatorial regions increase relative to those in

the polar region (Fig. 9). Indeed, when t/R drops below - 0.2, the equatorial regions

experience the largest principal stress, and are thus expected to be the regions in which

cracking is initiated.

The evolution of the maximum principal stress within the microballoon with

applied strain for both tensile and compressive loading is summarized in Fig. 7. The

results are presented as contours of constant maximum principal stress. As expected,

the maximum principal stress develops more rapidly in tension than in compression.

Nevertheless, for wall thicknesses in the range, t/R • 0.2, the maximum principal stress

under compressive loading reaches substantial levels (> 5 0o) at modest strains (-5 5n).

It is also of interest to note that for compressive loading, the maximum principal stress

initially increases with increasing t/R at a prescribed overall strain, up to t/R - 0.2. In

this regime, the strain required to cause microballoon cracking would decrease with

increasing t/R. For t/R Z 0.2, the maximum principal stress decreases with increasing

tUR However, it decreases with increasing t/R at a prescribed remote stress for all

values of t/R.

7k134(Adig 7. 19940.19 ftubE
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At the simplest level, the onset of cracking in the microballoons can be assumed

to occur when the maximum principal stress within the microballoon reaches a critical

level, (o. This criterion can be combined with the computed stress distributions to

predict the remote stress for the onset of cracking. Though this stress does not

necessarily correspond to composite fracture, it does provide a relative measure of

performance, incorporating the effects of wall thickness and microballoon strength. The

pertinent results from tensile and compressive loadings are summarized in Figs. 10(a)

and (b), respectively. Several features concerning flow and fracture are noteworthy.

When the microballoons are sufficiently weak ((Yo/0o < 4 for tension and cY,/aTo < 2 for

compression), the microballoons fracture before the limit flow stress is achieved,

regardless of wall thickness. In this regime, the composite would be expected to exhibit

limited ductility. For stronger microballoons, the limit stress can be achieved prior to

the onset of fracture, provided the wall thickness is sufficiently large. In this regime, the

material would be expected to exhibit substantially higher ductility, with fracture

controlled by an alternate mechanism (e.g. ductile fracture of the metal). The variation

in the critical wall thickness with microballoon strength for both tensile and

compressive loading is plotted in Fig. 11. The lines in this figure essentially represent

transitions in failure mechanisms, from the one dominated by microballoon cracking to

the one governed by either ductile rupture of the matrix (for tensile loading) or the

attainment of the limit flow stress (for compressive loading).

4.3 Effects of Matrix Hardening

The effects of matrix hardening on the overall stress-strain response of the

composite were evaluated by varying the exponent n in the Ramberg Osgood law.

Figs. 12(a) and (b) show the flow curves for two values of t/R (0.05 and 0.2) and three

values of n (0, 0.1 and 0.2). Fig. 13 shows the same results presented in the normalized

form, a (E)/am (e), where a (W) is the flow stress of the composite at a strain e and

7L1M34(Aptil 7.1994)3:19 PMNmd



13

am (e) is the flow stress of the matrix at the same level of strain. It is apparent that the

flow stress of these composites always increases with the hardening exponent, n, as it

does in the matrix material alone. However, the flow stress ratio, a (e)/am (e), exhibits

somewhat different behavior. For thick-walled microballoons, a ()/aom (E) increases

with n, as reported previously for particulate reinforced materials6. Furthermore, the

asymptotic level of this ratio increases with n. In contrast, for the thin-wailed

microballoons, a (e)/am (W) decreases with increasing n at small strains (W/eo < 20 for

t/R = 0.05), indicating that the strengthening increment derived from the microballoons

(expressed in terms of the average matrix flow stress) is diminished. At larger strains,

the trends with n are reversed, and ultimately, the flow stress ratio reaches the same

asymptotic level for all values of t/R.

CONCLUDING REMARKS

The elastic/plastic response of microballoon reinforced metal matrix composites

has been studied through finite element analysis of a unit cell model. The key

parameters governing the response are the normalized wall thickness, t/R, the modulus

ratios Ec/Em and the matrix hardening exponent, n. Moreover, the strength and

ductility are governed by the microballoon strength, al/ao.

Clearly, the elastic moduli of materials with t/R < 1 are less than those for fully

dense particulates (t/R = 1), though the former materials have a lower density. In some

applications, comparisons of elastic properties on the basis of the normalized

performance indices rather than of the modulus itself would be the preferred approach.

In this case, the microballoon composites may provide optimal performance, depending

on the density ratio, Pc/pro and modulus ratio, Ec/Em. The plastic response of the

microballoon composites exhibits trends similar to those of particulate reinforced

"71:M334(Apdl 7. 1994)3:19 PMfmmd
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materials, with one important difference: the transient region in the microballoon

composites paslsts to much larger strains, increasing with decreasing t/R.

The attainment of the limit flow stress in the microballoon composites depends

on t/R and GY./ao, as well as the direction of loading (tension vs. compression). For

relatively weak, thin-walled microballoons, fracture of the microballoons is likely to

occur at a low level of applied stress and may limit the strength and ductility of the

composite. Conversely, for relatively strong, thick-walled microballoons, the limit flow

stress may be achieved, though in some instances it may be precluded by other failure

mechanisms.
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FIGURES

Fig. 1 A scanning electron phof a composite comprised of A12•3
microballoons in an Al alloy matrix.

Fig. 2 A typical unit cell and finite element mesh (t/R = 0.2).

Fig. 3 Influence of wall thickness and ceramic/matrix modulus ratio on the
composite modulus normalized by (a) the matrix modulus, EP6 and (b) the
limiting composite modulus, E*. The dashed lines in (a) are intrplation
between the end points, in accordance with Eqn. 2.

Fig. 4 Comparison of bulk modulus computed from the analytical solutions (solid
lines) with those obtained from FEM (dashed lines).

Fig. 5 Influence of wall thickness on the stiffness performance indices, for density
ratios, Pc/Pnv of (a) 1/3, (b) 1, and (c) 3.

Fig. 6 The elastic/plastic response and development of matrix yielding for
composites with microballoon wall thicknesses, t/R, of 0.5 and 0.05. The
regions on the hatched sides of the lines have yielded.

Fig. 7 Effects of microballoon wall thickness on the axial stess-strain response. The
thin lines represent contours of constant maximum principal stress within the
microballoon wall: (a) tensile loading, (b) compressive loading. Note that the
flow response, indicate by the solid lines, is independent of the mode of
loading (tension vs. compression).

Fig. 8 Stress distribution within microballoon for t/R = 0.5. The remote strain is

/o = 2.

Fig. 9 Stress distribution in microballoon for t/R = 0.1. The remote strain is E/Io = 2.

71:1M34(A 7,1994)3:19 PMIjA



17

Fig. 10 Trends in the suem required for the onset of miamballoon cracking with wail
thicime, t/R, and normalized sntcroblloon egth, 3/4oo: (a) tnsion and

(b) compreusoia

Fig. 11 Variation in the critical wall thicknes with microballoon strength for tensile

and compressive loading.

Fig. 12 Effects of matrix hardening on the composite flow response for. (a) t/R - 0.2
and (b) t/R = 0.05.

Fig. 13 The normalized flow stress ratio, Y (e)/an n (), for (a) t/R - 02 and

(b) t/R - 0.05.
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